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Two different methods for the evaluation of overlap integrals of B functions 
with different scaling parameters are analyzed critically. The first method 
consists of an infinite series expansion in terms of overlap integrals with equal 
scaling parameters [ 14]. The second method consists of an integral representa- 
tion for the overlap integral which has to be evaluated numerically. Bhat- 
tacharya and Dhabal [13] recommend the use of Gauss-Legendre quadrature 
for this purpose. However, we show that Gauss-Jacobi quadrature gives better 
results, in particular for larger quantum number. We also show that the 
convergence of the infinite series can be improved if suitable convergence 
accelerators are applied. Since an internal error analysis can be done quite 
easily in the case of an infinite series even if it is accelerated, whereas it is 
very costly in the case of Gauss quadratures, the infinite series is probably 
more efficient than the integral representation. Overlap integrals of all com- 
monly occurring exponentially declining basis functions such as Slater-type 
functions, can be expressed by finite sums of overlap integrals of B functions, 
because these basis functions can be represented by linear combinations of 
B functions. 
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1. Introduction 

The problem of evaluating overlap integrals of exponentially declining function~: 
such as Slater-type functions both accurately and efficiently occurs not only in 

* Dedicated to Professor J. Kouteck,) on the occasion of his 65th birthday 
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ab initio calculations but also in semiempirical calculations and in solid-state 
theory. Consequently, overlap integrals of Slater-type functions and of other 
exponentially declining functions have already been investigated by numerous 
authors and yet, it seems, that no definite conclusion about the optimal approach 
has been reached so far. 

In this article we shall consider a special class of exponentially declining functions, 
the so-called B functions, which are defined by [1]: 

B,mt(a, r) = (2/~)l/2[2n+t(n + 1)!]-l(ar)"+l-1/2K, 1/2(ar) Y?(0, ~),  

a c R + ,  n ~ - ,  n>--L (1.1) 

Here, Y~' stands for a spherical harmonic using Condon-Short ley phases and 
K,-1/2 denotes a modified Bessel function of the second kind [2]. •+ denotes 
the set of positive real numbers and 7/the set of positive and negative integers. 
Scalar B functions are essentially reduced Bessel functions as introduced by 
Shavitt [28]. 

/ 

At first sight, this choice may appear to be somewhat surprising since B functions 
are relatively complicated mathematical objects. However, the currently most 
promising approach for the evaluation of molecular multicenter integrals is based 
upon the Fourier transform convolution theorem which was introduced into 
quantum chemistry by Prosser and Blanchard [3]. Hence, if one looks at the 
momentum space properties of B functions it turns out that their Fourier trans- 
forms /~ are of exceptional simplicity [4]: 

B,,t(a,p) (2~-) 3/z -ip . . . . .  = e t~.,l(ce, r) dar 

= (2/~),/2a>,+t_ , (- ip) '  ( 2+p2),+,+, Y'r(P/P).  (1.2) 

The Fourier transforms of other exponentially declining functions such as Slater- 
type functions or bound-state hydrogen eigenfunctions are significantly more 
complicated. In articles by Niukkanen [5] and ourselves [4, 6, 7] it was shown 
that the Fourier transforms of all commonly occurring atomic orbitals can be 
expressed as linear combinations of Fourier transforms of B functions. In view 
of the Fourier transform convolution theorem [3] this also implies that overlap 
integrals of  all the other commonly occurring atomic orbitals can be expressed 
as finite sums of overlap integrals of B functions. Hence, it is sufficient to study 
overlap integrals of B functions for which we use the following notation: 

~n212m2[ f m* B.,~t,(a, r)B.2,t2(/3, r - R )  d3r. (1.3) ~d,m,~a, fl, R) = % 

Overlap integrals of B functions were already studied by several authors [1, 4, 
5, 8-15]. Computationally particularly troublesome are those cases in which the 
two scaling parameters oe and /3 are different. In this article, we shall compare 
two different approaches to overcome these computational problems. Recently, 
Bhattacharya and Dhabal [13] proposed to use a one-dimensional integral 
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representation for overlap integrals which, however, they had to evaluate numeri- 
cally using Gauss-Legendre quadrature. On the other hand, we were recently 
able to derive some new infinite series expansions for overlap integrals [14] which 
converge quite rapidly if suitable convergence accelerators are applied. In the 
following, we want to compare critically the relative merits of these two 
approaches. 
As overlap integrals are basic entities occurring also in formulas for more 
complicated molecular integrals, it is of considerable interest also for the purpose 
of evaluating other molecular integrals to investigate which would be the most 
efficient way of evaluating overlap integrals of B functions. 

2. Different expressions for overlap integrals 

The Fourier transform convolution theorem [3] makes it possible to express an 
overlap integral as an inverse Fourier integral: 

f f*(r)g(r-R)  d3r= f e-iR'Pf*(p)g(p) d3p. (2.1) 

Here, f and g are the Fourier transforms o f f  and g, respectively. If we combine 
this relationship with the Fourier transform of a B function, Eq. (1.2), and if we 
linearize the product of the two spherical harmonics by introducing Gaunt 
coefficients [16], 

(13m3]Izm2[llml) = J y ~ ( O )  y~2(fl) Y~,,(I~) d12, (2.2) 

we then obtain for the overlap integral of two B functions [4, 14]: 

sn212m2," :2012nl+l,--l~2n2+12--1 l~a(x2) (12m2(llml[im2_ml ) =,Z,r=3C~,r 
[=/rain 

x f e -in'p Pt'+I2Y'~<"~(P/P) ( a2 + p2) ,,l +~, +l( /32 + p2) ,,S~+ ~ d3 p. (2.3) 

The limits of the l summation in Eq. (2.3) follow from some selection rules 
satisfied by the Gaunt coefficients [16], and the symbol Z(2) indicates that the 
summation proceeds in steps of two. 

In the case of equal scaling parameters, a =/3, the remaining Fourier integrals 
in Eq. (2.3) pose no problems since they can be expressed by finite sums of 
Fourier integral representations of B functions [14]: 

a2n+/-1 f eirP (-iP)~Y'F(P/P) 
B=~.,(a, r) 2r _ (a2+p2) "+'+~ d3p" (2.4) 

Thus, the overlap integral of two B functions with equal scaling parameters is 
given by the following simple sum of B functions [1]: 

Sn212m2, ~ 47r 1~(2) ,dlmlta, a,R)=(-1)'~-'~ (12m2[llml]lm2-m1) 
O/ 1= lmin 

Xt= o Bn~:+n2~l~+12-l-t+1'(a'R)' 
A1 = (b + 6 -  l)/2.  (2.5b) 
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In the case of different scaling parameters a and/3 it is much harder to do the 
remaining integrations in Eq. (2.3) since a straightforward application of Eq. 
(2.4) is not possible. Hence, first the denominators in Eq. (2.3) have to be 
transformed in such a way that Eq. (2.4) becomes applicable. So far, three different 
techniques, which accomplish this transformation, were described in the 
literature: Partial fraction decompositions, Taylor expansions, and integral rep- 
resentations. 

If we use a partial fraction decomposition for (a2+p2) -na-I~-I �9 (/32+p2) -n2-12-1 
[4] in Eq. (2.3), we can derive the so-called Jacobi polynomial representation 
for the overlap integral with different scaling parameters [1]: 

sn212rn2( n,l,m,,O~, /3, R) 
I max 

= (-1)'~4~r 2 (2) (12m2lllmlllm2-ml) 
l =/rnin 

(--1)nl-'-'l(Ol'//3) 12 
X [ / 3 3 [ 1  - -  ( 0 / / ] 3 ) 2 ] . 2 + 1 2 + 1  

nj +lj 
x E  

S=0  

/ ~ 2 . ~ _  2X 
[ 1,1sO(s_nl_Ai2 n2+AIl)[ ~ OL ~nrn2_rnl[ 

~3[1- (/3/~)2].1+,,*, 

n2+l 2 

x 2  
s=O 

/ 2..i n 2 X  ~_l~.p(~_.2_zt,,.i+at2)[a -rp IBm2_ml(R R)~, 
, .2+,:-~ \o , :_ /3  ~1 ~-,., ,,~, } 

(2.6a) 

A l , = ( l - l l + l z ) / 2 .  Al2=(l+l~-12)/2.  (2.6b) 

Here. P(2'r is a Jacobi polynomial. The original derivation of Eq. (2.6) was 
relatively complicated since it involved some nontrivial manipulations of special 
functions [8]. However, this derivation could later be simplified considerably, 
and the contribution of three-dimensional delta functions, which occur quite 
naturally in the theory of B functions [17], was also analyzed [14]. An algorithm 
for the partial fraction decomposition of more general rational functions than 
the ones occurring in Eq. (2.3) was discussed by Niukkanen in an article on 
convolution integrals [12]. 

The Jacobi polynomial representation for overlap integrals, Eq. (2.6), allows a 
very economical evaluation of overlap integrals [9, 11, 13]. However, in Eq. (2.6) 
there are terms which become singular for a ~ fl and for R ~ 0. This implies that 
Eq. (2.6) will yield reliable results only if the two scaling parameters a and fl 
differ by a sufficient amount, and if R is large enough. Outside these regions 
alternative representations have to be used. 

The first attempt to overcome the stability problems of the otherwise very efficient 
Jacobi polynomial representation, Eq. (2.6), was to use one of the following two 
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Taylor expansions of an overlap integral with different scaling parameters in 

oo 
(c~//3) 2"1+q-1 Z ( n t + / l + l ) ~  

v = O  1)!  

X ~rtlW/J/lrrllk/3,/3, R) (2.7) 

= (/3I,~) 2~2+'2-~ Z v! 
i~=O 

-"2+"e'=" R). (2.8) X ~nlllml ~OL~ 0l~ 

The infinite series in Eq. (2.7) converges for ]1 -(a/[3)2[  < 1, whereas the infinite 
series in Eq. (2.8) requires I1 - ( /3/a)l  2 < 1. The easiest way to derive these infinite 
series is to use the Taylor expansion 

( e 2 + p e ) _ n _ i _ , =  (r/2+p2)_n_,_ , ~ ( n + / +  1),,{'r'/2--sC.____~2~ ~" (2.9) 
.=o V] \ 2+p~]  

in Eq. (2.3). The computational problems associated with the two infinite series 
expansions (2.7) and (2.8) were already discussed quite extensively in the literature 
[9, 11, 13, 15], and it was found that for larger differences of  the scaling parameters 
ce and/3 convergence could become quite slow. However, it should be emphasized 
that even in the case of slow convergence the infinite series (2.7) and (2.8) are 
able to produce reliable numbers. 

The not entirely satisfactory convergence properties of the infinite series (2.7) 
and (2.8) motivated us to look for alternative, more rapidly convergent series 
expansions for overlap integrals. We found that this aim can be accomplished 
with the help of the following generating function for terminating hypergeometric 
series 2F1 [14]: 

(~+p~)--,- ' , - ' (r  ~)--2-,~-, 
= [(O[2+/32)/2+p2]-n,-n2- ' , -12-2 

m 

X ~ 2F1(-//, n l + l ~ + l ;  n ~ + n 2 + l ~ + 1 2 + 2 ;  2) 
/- '=0 

x v! [a2+/3=+2p2 j �9 (2.10) 

Inserting this into Eq. (2.3) yields [14]: 

sn212m2( 012nl+11--1/3 2n2+12-1 

n,l, ml \ Ol, /3, R )  = [ ( O12 + /32)12]nl +n2+(I,+12)/2_l 

co 

x Z 2F~( -v ,n~+/~+l ;  n~+n2+l~+lz+2;2) 
P = 0  

~'! - k ~ J  
~n212m 2 /I-1 2 t X .~ ~/l+///,FFll~[t ~ ~--/32)/2] ~/2, [(c~2 +/32)/2] ~/2, R). (2.11) 

terms of overlap integrals with equal scaling parameters [ 11]. 

Sn21~m2[ ,,,,-,,,, ~ o~, /3, R )  = 
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Since the terminating hypergeometric series 2F1 in Eq. (2.11) can be computed 
with the help of a stable three-term recurrence formula [14], the terms of the 
series in Eq. (2.11) can be computed just as easily as the terms in Eqs. (2.7) and 
(2.8), respectively. However, we found that in all practically relevant cases the 
infinite series in Eq. (2.11) converges faster than the infinite series in Eqs. (2.7) 
and (2.8). 

Finally, the well-known Feynman identity can be generalized to give [18] 

a_mb_ . ( m + n - 1 ) !  f ,  t in- l (1-  t) "-1 
= ( m - l ) ! ( n - 1 ) !  -v  [ a t _ b ( l _ t ) ] , , +  . dt. (2..12) 

With the help of this relationship one obtains for the numerator in Eq. (2.3): 

( a  2 + p2)- . , - , , -1(132 + p2)-.2-,~-1 _ (nl  + n2 + tl + /2  + 1)! 
(nl+lO!(n2+12)! 

fot x",+q(1 - x )  "~+t: dx 

(2.13) 

If  this integral representation is used in Eq. (2.3), and if the order of integrations 
is interchanged one obtains an integral representation for the overlap integral 
with different scaling parameters [10, 13]: 

sn212m2rOL /3, R )  = Ol2nl+ll--1/3 2n2+12-1 (/11 + n2"q- 11 +/2 + 1)! 
. ,h , . , .  , (nl  + 11)!(n2+ 12)! 

fo ' x"'+~'(1 - x)"~+'~ 
x [ ~ ( ~ ,  13; x ) ]  2~176 

x r /3; x), y(a, /3;  x), R) dx (2.14a) ~nlllm2\ l \  

y(cg/3; x) = [c~2x + j82(1 - x ) ]  1/2. (2.14b) 

No simple closed form expression is known for the remaining integral in Eq. 
(2.14). Consequently, it has to be evaluated by numerical quadrature. 

3. Numerical properties of different representations for overlap integrals 

In this section we want to compare how the new infinite series expansion (2.11) 
does in comparison with the integral representation (2.14) which has been 
recommended strongly by Bhattacharya and Dhabal [13]. 

It was mentioned earlier that the infinite series (2.11) normally converges more 
rapidly than tht~ older series expansions (2.7) and (2.8), respectively. A further 
improvement of the rate of convergence can be achieved if suitable convergence 
accelerators are applied. We tried several nonlinear accelerators, for instance 
Levin's u transformation [19] and Brezinski's 0 algorithm [20], but we found 
that in the case of Eq. (2.11) Wynn's e algorithm [21] gives the best results since 
the number of terms, which is required to reach a certain accuracy, is reduced 
drastically. Also no numerical instabilities induced by the nonlinear transforma- 
tion were observed [15]. 
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Since the use of  such extrapolation methods is not yet very well known among 
theoretical chemists we want to sketch briefly how we apply Wynn's e algorithm 
for the acceleration of convergence. Let {s.} be a sequence of partial sums of an 
infinite series, 

n 

s , =  ~ a~, n - 0 .  (3.1) 

Then, Wynn's e algorithm is given by the following two-dimensional nonlinear 
recursive scheme [21]: 

e("~ = 0, e~0 ") (3.2a) - 1  ~- S n ,  

e(,) _( ,+l~ . [e~, ,+ ,~  e~,~]-l, m, n > 0. (3.2b) m + l  = g i n - - 1  T 

Only those elements of  the e table with even lower index can be used as 
approximations to the limit of  the series. The elements of  the type o(") o2,~+1 are only 
intermediate quantities. Hence, if we know the partial sums So, �9 �9 S2k, we use 
e(o) 2k as an approximation to the limit, and if we know the partial sums sl, �9 �9  S:k+~, 
we use ~:k as an approximation to the limit. This can also be expressed in the 
language of Pad4 approximants.  Let f ( z )  be a function which is analytic in a 
neighborhood of zero, 

cx~ 

f ( z ) =  Y akz k, (3.3) 
k = 0  

and let [ L / M ] / ( z )  be the Pad6 approximant  which agrees with the power series 
(3.3) up to terms of order 0(zL+~+~). Then, it can be shown [22] that the e 
algorithm yields the upper  half  of the Pad4 table, 

e~k )= [k + n /k] / ( z ) .  (3.4) 

Hence,  in our case we always use the following staircase sequence in the Pad6 
table as approximants  to the limit: 

[0/0], [1/0], [ 1 / 1 ] , . . . ,  [ , , /p] ,  [ p +  l / v ] ,  [ v +  1 / , ,+  1 ] , . . .  (3.5) 

Finally, we would like to mention that there is not only practical but also strong 
theoretical evidence that the e algorithm is able to accelerate the convergence of 
the infinite series in Eq. (2.11). For instance, assume that in the limit of  large 
summation indices a sequence of partial sums {s,} satisfies 

s ~ s + A ' n  ~ ~ Gn -~, c o r  (3.6) 
r = O  

Now, if IA[ < 1 and 0 # 0, 1, . . . ,  k -  1, the application of the e algorithm to this 
sequence gives [23] 

e(2~ ) = s -~ CoA ,+2k n 0-2k k ! ( -  0) k (1 + 0(n (3.7) 
( /~  - -  1 )  2k  - - 1 ) ) .  

Obviously, this represents a considerable improvement  of  the rate of  convergence. 
The above analysis can be applied to the infinite series in Eq. (2.11) since in the 
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limit of large summation indices the partial sums of Eq. (2.11) are of the form 
of Eq. (3.6) [15]. 

If one tries to use the integral representation (2.14) for the evaluation of overlap 
integrals one first has to choose a quadrature method. If only a relatively small 
number of overlap integrals is to be evaluated, and if the values obtained in this 
way should have a certain guaranteed accuracy, then it is a good idea to use an 
adaptive quadrature routine such as the IMSL [24] subroutine DCADRE which 
was used by Trivedi and Steinborn [10] when they first investigated the numerical 
properties of the integral representation (2.14). The underlying philosophy and 
the performance of DCADRE is described in a book by Rice [25]. However, an 
adaptive algorithm will quite often require more integrand evaluations than other 
quadrature methods. The reason is that a good adaptive algorithm is rather 
cautious about accepting a result as being correct up to a certain accuracy. It 
usually does some extra integrand evaluations in order to confirm its preliminary 
conclusions. 

Hence, if efficiency rather than reliability becomes the decisive issue, adaptive 
quadrature methods are not particularly attractive. In such cases, Gauss formulas 
which not only optimize the weights but also the abscissae, are very popular 
since they are known to produce high accuracy at low cost for reasonably 
well-behaved integrands. Accordingly, Bhattacharya and Dhabal [13] used 
Gauss-Legendre quadrature for the evaluation of the integral representation 
(2.14). However, from the general theory of Gauss quadrature [26] one may 
immediately conclude that Gauss-Legendre formulas, which are derived for the 
weight function w(x) = 1, are not the optimal choice for evaluating the integral 
in Eq. (2.14). The reason is that the integrand in Eq. (2.14) contains the factor 
x~l+q(1- x) "2+t2 which is also the weight function for some special Jacobi poly- 
nomials. Consequently, we may expect that appropriate Gauss-Jacobi formulas 
will do better than Gauss-Legendre, in particular for larger quantum numbers. 

In Tables 1-3 we compare the performance of the infinite series (2.11) with the 
infinite series accelerated by Wynn's e algorithm, Eq. (3.2), and with Gauss-Jacobi 
and Gauss-Legendre quadratures of Eq. (2.14). The number N in the first column 
of the tables corresponds either to the number of terms of the partial sums of 
the series (2.11) or to the number of integration points used in the quadratures. 
Hence, in all cases it indicates how many overlap integrals with equal scaling 
parameters, Eq. (2.5), had been evaluated. The computational complexity of an 
overlap integral with equal scaling parameters depends only upon the angular 
momentum quantum numbers la, ml, 12, and m2, and not upon the orders nl 
and n2 of the two B functions in the integral. Consequently, N is a relatively 
good measure of the numerical costs of the different computational methods. 
The "exact" values given in the last row of the tables were obtained from Table 
IV of [ 15]. The weights and abscissae for both Gauss-Jacobi and Gauss-Legendre 
quadratures were computed with the help of the subroutine D01BCF from the 
NAG library [27]. The computer which we use now has in Fortran Double 
Precision an accuracy of 15 to 16 decimal digits. 
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On the basis of the results presented in Tables 1-3, which according to our 
experience are quite typical, one is tempted to conclude that Gauss-Jacobi clearly 
does best and that Gauss-Legendre is slightly better than the accelerated series 
(2.11). However, the situation is not as simple as it looks. The above conclusion 
is certainly correct if one only has to calculate a single overlap integral and if 
one knows in advance how many integration points will be needed to produce 
some given relative accuracy, But such circumstances are certainly the exception. 
Normally, one has to calculate a large number of integrals with various different 
sets of quantum numbers and with a wide range of possible scaling parameters. 
Then a very serious defect of the otherwise "superaccurate" Gauss formulas 
comes into play. Let EN(f) be the quadrature error of an N point Gauss rule 
associated with some weight function w(x) and a -< x <-- b, 

EN(f) = w(x)f(x) d x -  • wkf(xk). (3.8) 
k = l  

Here, wk and xk are the appropriate Gaussian weights and abscissae, respectively. 
Then, it is well known that the quadrature error EN(f) can be estimated by the 
2Nth  derivative of f [26], 

EN(f) <- CNf(2N)(~), a < ~ < b. (3.9) 

The constant CN depends only upon N and the weight function w but not 
upon f 

Thus, if we would want to apply this theoretical error estimate we would have 
to know a bound on the 2Nth  derivative of the integrand in the integral representa- 
tion (2.14). Clearly, this is very unpractical and the error analysis has to be done 
numerically. 

In practice, this means that if one wants to find out whether an N point quadrature 
rule has already produced the required accuracy one has to compare it with 
another, say ( N  + K)  point rule. Unfortunately, Gaussian abscissae are in general 
different for different orders N. This implies that this simple convergence check 
requires already 2N  + K integrand evaluations. If  such convergence checks have 
to be done repeatedly Gauss quadrature soon becomes hopelessly uneconomical. 

Consequently, if one would have to calculate a somewhat broader class of overlap 
integrals and if one would want to use the integral representation (2.14) in 
connection with Gauss quadrature, it would be advisable to avoid any internal 
error analysis at all. Instead, one would first determine experimentally how many 
abscissae are needed to produce the required accuracy even for those integrals 
which are believed to represent the most unfavorable cases. Then, all integrals 
would be evaluated with this fixed number of abscissae. 

Apart from the fact that such a "worst case design" is not entirely satisfactory 
from a theoretical point of view - one can never be sure that one really found 
the worst case - it also reduces the efficiency of Gauss quadratures considerably 
since many overlap integrals would then be computed with an accuracy which 
is higher than actually needed. Such problems cannot occur in the case of the 



Overlap integrals of B functions 335 

infinite series (2.11) even i f  it is acce le ra ted ,  because  an in ternal  e r ror  analysis  

is qui te  s imple .  

Consequen t ly ,  we feel tha t  it is by  no means  clear  whe ther  the  infinite series 
(2.11), i f  it  is acce le ra ted  by  Wynn ' s  e a lgor i thm,  Eq. (3.2), is rea l ly  infer ior  to 
the  in tegral  r ep resen ta t ion  (2.14), i f  it is eva lua ted  by  means  o f  G a u s s - J a c o b i  or  
G a u s s - L e g e n d r e  quad ra tu re  rules. In  our  op in ion ,  the answer  to this ques t ion  
will  not  on ly  d e p e n d  u p o n  the n u m b e r  and  types  o f  over lap  integrals ,  which  are 
to be ca lcu la ted ,  but  also very much  u p o n  the c o m p u t e r  implemen ta t ion .  But we 
feel that  an efficient i m p l e m e n t a t i o n  can be a c c ompl i she d  much  more  easi ly in 
the case o f  the  infinite series (2.11) which  a l lows a s imple  and  economica l  in ternal  

e r ror  analys is  even i f  it is accelera ted .  

F ina l ly ,  we w o u l d  l ike to r emark  that  i f  one has access to a good  adap t ive  
quad ra tu re  p r o g r a m  such as the  I M S L  [24] subrou t ine  D C A D R E  and  i f  efficiency 
is not  o f  pa r t i cu l a r  impor t ance ,  then  the s imples t  way  to compu te  over lap  integrals  
of  B funct ions  wou ld  be  to use the in tegra l  r ep resen ta t ion  (2.14) in connec t ion  
with this adap t ive  quad ra tu r e  rout ine.  One w o u l d  only  need  a p r o g r a m  for over lap  
integrals  with equal  sca l ing  pa rame te r s  accord ing  to Eq. (2.5) which  wou ld  be 
re la t ive ly  s imple.  Al l  the  er ror  analysis  o f  the  quadra tu re  w o u l d  then  be done  by  

the compute r .  
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